Simultaneous Sulfate Reduction and Metal Precipitation in an Inverse Fluidized Bed Reactor: Unesco-Ihe PhD Thesis (Paperback)

Before placing an order, please note:

  • You'll receive a confirmation email once your order is complete and ready for pickup. 
  • If you have a membership, please make a note of this in the order comments and we'll apply your discount.
  • If you place a pre-order in the same order as currently available titles, an additional shipping fee will be added to your order. 
  • Women & Children First is not responsible for lost or stolen packages.
Simultaneous Sulfate Reduction and Metal Precipitation in an Inverse Fluidized Bed Reactor: Unesco-Ihe PhD Thesis By Denys Kristalia Villa Gómez Cover Image
$125.00
Unavailable

Description


Industrial activities like textile processing and mining are typical sources of heavy metal-rich wastewaters. The sulfate reducing process has become an attractive method for the production of sulfide to precipitate metals since most of these streams also contain sulfate, which is the electron acceptor and, in less common cases, chemical oxygen demand which is the electron donor of sulfate reducing bacteria. The inverse fluidized bed (IFB) reactor is a system for the production of biogenic sulfide and metal precipitation in the same unit due to its configuration: the biomass floats on top of the reactor, whereas metal sulfide precipitates settle and thus can be recovered at the bottom.

The main objective of this thesis was to elucidate the factors affecting simultaneous sulfate reduction and precipitation of heavy metals in an IFB reactor in order to optimize the metal recovery from wastewaters such as acid mine drainage. Therefore, this thesis focused on varying different operational conditions to study their effect on the solid-liquid separation and purity of the metal sulfide precipitates as well as on their effect on the sulfate reducing process. Furthermore, one chapter was focused on the study of strategies for sulfide control in the IFB reactor. In addition, recommendations for further research to improve the recovery of the metal sulfides in bioreactors are given.

Product Details
ISBN: 9781138001664
ISBN-10: 113800166X
Publisher: CRC Press
Publication Date: October 18th, 2013
Pages: 200
Language: English