Efficient Processing of Deep Neural Networks (Hardcover)

Before placing an order, please note:

  • You'll receive a confirmation email once your order is complete and ready for pickup. 
  • If you have a membership, please make a note of this in the order comments and we'll apply your discount.
  • Online orders are nonrefundable and cannot be exchanged.
  • If you place a pre-order to be shipped in the same order as currently available titles, an additional shipping fee will be added to your order.  
  • Women & Children First is not responsible for lost or stolen packages.
Efficient Processing of Deep Neural Networks By Vivienne Sze Cover Image
$131.94
Unavailable

Description


This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics-such as energy-efficiency, throughput, and latency-without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems.

The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Product Details
ISBN: 9781681738352
ISBN-10: 168173835X
Publisher: Morgan & Claypool
Publication Date: June 24th, 2020
Pages: 341
Language: English