Wind Turbine System Design: Nacelles, Drivetrains and Verification (Energy Engineering) (Hardcover)

Before placing an order, please note:

  • You'll receive a confirmation email once your order is complete and ready for pickup. 
  • If you have a membership, please make a note of this in the order comments and we'll apply your discount.
  • If you place a pre-order in the same order as currently available titles, an additional shipping fee will be added to your order. 
  • Women & Children First is not responsible for lost or stolen packages.
Wind Turbine System Design: Nacelles, Drivetrains and Verification (Energy Engineering) By Jan Wenske (Editor) Cover Image
By Jan Wenske (Editor)
$165.00
Unavailable

Description


Wind energy is a pillar of the strategy to mitigate greenhouse gas emissions and stave off catastrophic climate change, but the market is under tremendous pressure to reduce costs. This results in the need for optimising any new wind turbine to maximise the return on investment and keep the technology profitable and the sector thriving. Optimisation involves selecting the best component out of many, and then optimising the system as a whole. Key components are the nacelles and drive trains, and the verification of their work as a system.

Wind Turbine System Design: Volume 1: Nacelles, drive trains and verification is a valuable reference for scientists, engineers and advanced students engaged in the design of wind turbines offering a systematic guide to these components. Chapters written by industry experts cover load calculation and validation, models and simulation, pitch and yaw system concepts and designs, drivetrain concepts and developments, gearboxes, hydraulic systems, lubrication, and validation. The book aims to enable readers to make informed and systematic choices in designing the best turbine for a given situation.

Product Details
ISBN: 9781785618567
ISBN-10: 1785618563
Publisher: Institution of Engineering & Technology
Publication Date: February 17th, 2023
Pages: 526
Language: English
Series: Energy Engineering