Global Seismicity Dynamics and Data-Driven Science: Seismicity Modelling by Big Data Analytics (Hardcover)

Before placing an order, please note:

  • You'll receive a confirmation email once your order is complete and ready for pickup. 
  • If you have a membership, please make a note of this in the order comments and we'll apply your discount.
  • If you place a pre-order in the same order as currently available titles, an additional shipping fee will be added to your order. 
  • Women & Children First is not responsible for lost or stolen packages.
Global Seismicity Dynamics and Data-Driven Science: Seismicity Modelling by Big Data Analytics By Mitsuhiro Toriumi Cover Image


Chapter 1. Introduction
Chapter 2. Nature of Earthquakes in the Solid Earth 2-1. Global Earthquake Distribution and Plate Tectonics 2-2. Earthquake Propagation and Shear Instability 2-3. Earthquakes and Global Network of Seismic Stations
Chapter 3. Global Seismicity of the Solid Earth 3-1. Stochastic Natures of Seismicity 3-2. Two Types of Earthquakes and Their Occurrences 3-3. The Global Seismicity of Subduction Zones 3-4. The Global Seismicity of Mid Oceanic Ridges 3-5. Global Moment Release Rates by Large Earthquakes 3-6. Stress Orientation and Seismic Anisotropy of the Plate Boundary
Chapter 4. Data - Driven Sciences for Geosciences 4-1. Matrix Decomposition Method and Sparse Modeling 4-2. Deep Neural Network Approximation 4-3. State - Space Modeling of Time Series 4-4. Frobenius Norm Maximum Method for Dynamics
Chapter 5. Data-Driven Science of Seismicity 5-1. Data Cloud of the Global and Japanese Seismicity
5-2. Data - Driven Sciences of Global Seismicity Dynamics 5-3. The Characteristic Features of the Correlated Global Seismicity 5-4. Global Seismic Moment Release Rate and Correlated Seismicity Rates 5-5. Correlated Seismicity Rate Variations of Global Ocean Ridges
Chapter 6. Down Scaling Seismicity of Japanese Regions 6-1. Outline of Tectonics of the Japanese Islands 6-2. Seismicity of Japanese Islands Regions 6-3. Seismicity Cloud of Japanese Islands Crust and Mantle 6-4. Characteristic Features of Correlated Seismicity Rates 6-5. Characteristic Features of Correlated Seismicity Rates Time Series 6-6. Correlated Seismicity Rates on z1-z2-z3 Diagram 6-7. Coherency of Correlated Seismicity Rates between Mantle and Crust 6-8. Annual Variation of the Correlated Seismicity Rates 6-9. Annual Variation of the Partial b-value Time Series 6-10. Correlated Seismicity of Non - Snowy and Snowy Regions of Japanese Islands 6-11. Partial b123 and b234 Values and Correlated Seismicity Rates 6-12. Correlated Seismicity Rates between Global and Japanese Islands Region
Chapter 7. Correlated Seismicity of the Northern California Region 7-1. Introduction 7-2. Seismicity Cloud of the Northern California Region 7-3. Correlated Seismicity Rates in Northern California 7-4. Partial b-values Variations of the Northern California Region 7-5. Comparison between Global Subduction Zones and Northern California Regions
Chapter 8. Model of Seismicity Dynamics from Data-Driven Science 8-1. Minimal Model of Global Seismicity Dynamics 8-2. Synthetic Coherency of Seismicity Dynamics by Slider Block Model
Chapter 9. Seismicity Dynamics Model of Global Earth and Japanese Island Region 9-1. Minimal Model of the Global and Japanese Seismicity Dynamics 9-2. Minimal Dynamic Model of Japanese Correlated Seismicity 9-3. Partial b-value Change and its Annual Variation
Chapter 10. Predictive Modeling of Global.

About the Author

Mitsuhiro Toriumi is a senior researcher at the Japan Agency of Marine - Earth Science and Technology (JAMSTEC). He was chief scientist of the board of innovation center of JAMSTEC and studied application of data-driven science and machine learning for global and regional seismicity. He was the research director of the Institute for Research on Earth Evolution (IFREE) and a professor in the Department of Complex Science and Engineering and a professor in the Faculty of Science, The University of Tokyo. During his early career, he was an associate professor of the Faculty of Science of Ehime University and an assistant professor of The University of Tokyo. He is an invited professor of the Open University of Japan. He has published and edited several books in the field of petrology, rheology, earth science, and solid earth science. He is a committee member of the Research Organization of Information and Systems of Japan and an adviser in Core Research for Evolutionary Science and Technology (Information and Measurement). He has been awarded the Geological Society of Japan Award.
Product Details
ISBN: 9789811551086
ISBN-10: 9811551081
Publisher: Springer
Publication Date: October 8th, 2020
Pages: 231
Language: English